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1. Introduction
Cooperative game theory offers a mathematical framework
for determining “agreeable” ways of sharing the costs
collectively incurred by a group of cooperating agents.
A (transferable utility) cooperative game �N � v� is defined
by a finite set N of players, and a cost function v� 2N →�,
with v���= 0. A subset S ⊆N is referred to as a coalition.
The quantity v�S� is the joint cost incurred by the agents in
coalition S if they cooperate. Cooperative game theory has
been used extensively to study cost sharing for a myriad of
application areas of operations research (e.g., Owen 1975,
Bird 1976, Granot and Huberman 1981, Kalai and Zemel
1982, Potters et al. 1991, Hartman et al. 2000, Goemans
and Skutella 2004, Chen and Zhang 2006).

In this work, we focus on situations in which agents face
supermodular, or increasing marginal, costs. A set function
v� 2N →� is supermodular if

v�S ∪ 	j��− v�S�� v�S ∪ 	j� k��− v�S ∪ 	k�� (1)

for all j� k ∈ N such that j 	= k, and S ⊆ N\	j� k�. We
focus on cooperative games �N � v� where v is nonnegative
and supermodular. We call such games supermodular cost
cooperative games.

One of the most important solution concepts in coopera-
tive game theory is the core (Gillies 1959). Suppose x ∈�N

is a cost allocation vector: for each i ∈N , xi is the cost allo-
cated to agent i. (For notational convenience, for any vector
x ∈�N we define x�S�=∑

i∈S xi for any S ⊆N .) The core

of a cooperative game �N � v� is the set 	x ∈ �N � x�N � =
v�N�� x�S�� v�S� for all S ⊆N�. In other words, the core
of �N � v� is the set of all cost allocations that distribute
v�N�—the cost incurred when all agents cooperate—in a
way such that no subset of agents would be better off by
abandoning the rest of the agents and acting on its own. An
empty core can be seen as an indication that cooperation
amongst all agents is undesirable.

It is straightforward to show that the core of a supermod-
ular cost cooperative game is empty (as long as costs are
not modular).1 Intuitively, this makes sense: the marginal
cost associated with adding a particular agent increases
as the size of a coalition grows, diminishing the appeal
of cooperation. Even though in this situation cooperation
may be undesirable from the perspectives of the individual
agents, an external party (e.g., a governing authority) may
still be interested in encouraging or enforcing cooperation
if the agents’ failure to cooperate causes negative external-
ities. In this case, one might ask, “How much do we need
to penalize a coalition for acting independently in order to
encourage all the agents to cooperate?” This notion is cap-
tured in the least core value of a cooperative game. The
least core of a cooperative game �N � v� is the set of cost
allocations x ∈ �N that are optimal solutions to the linear
program

z∗ =min
{
z� x�N �= v�N�� x�S�� v�S�+ z

for all S ⊆N�S 	= ��N}
(LC)
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(Shapley and Shubik 1966, Maschler et al. 1979). The opti-
mal value z∗ of (LC) is the least core value of �N � v�. The
computational complexity of computing a cost allocation in
the least core has been studied previously in several con-
texts (Faigle et al. 2000, Kern and Paulusma 2003, Faigle
et al. 2001). Properties of the least core value, on the other
hand, seem to have been largely ignored; one exception is
Deng (1998).

In this work, we demonstrate that supermodular costs
arise in a variety of situations: in particular, we show that
the problem of minimizing a linear function over a super-
modular polyhedron has supermodular optimal costs (§2).
This situation arises often in combinatorial optimization,
especially in scheduling. In addition, we study the compu-
tational complexity of the least core and least core value
of supermodular cost cooperative games. We show that the
problem of computing the least core value of these games is
strongly NP-hard, and that no �-approximation algorithm2

for this problem with � < 17/16 is possible, unless P =
NP (§3). We also examine a particular class of supermod-
ular cost cooperative games that arises from a scheduling
problem and show that the Shapley value3—which, in this
case, is computable in polynomial time—is in the least core
of these games, although computing the least core value of
these games is NP-hard (§4).

2. A Class of Optimization Problems with
Supermodular Optimal Costs

We begin by providing some motivation for looking at
cooperative games with supermodular costs. The prob-
lem of minimizing a linear function over a supermodular
polyhedron—a polyhedron of the form 	x ∈ �N � x�S� �

u�S� for all S ⊆ N�, where u� 2N → � is supermodular—
arises in many areas of combinatorial optimization, espe-
cially in scheduling. For example, Wolsey (1985) and
Queyranne (1993) showed that the convex hull of feasible
completion time vectors on a single machine is a super-
modular polyhedron. Queyranne and Schulz (1995) showed
that the convex hull of feasible completion time vectors for
unit jobs on parallel machines with nonstationary speeds is
a supermodular polyhedron. The scheduling problem they
considered includes various classical scheduling problems
as special cases. Goemans et al. (2002) showed that for
a scheduling environment consisting of a single machine
and jobs with release dates, the convex hull of mean busy
time vectors of preemptive schedules is a supermodular
polyhedron.

In this section, we show that the optimal value of min-
imizing a linear function over a supermodular polyhedron
is a supermodular function. As a result, by studying super-
modular cost cooperative games, we are able to gain insight
into the sharing of optimal costs for a wide range of
situations.

Theorem 1. Let N be a finite set, and let u� 2N → � be
a supermodular function. If dj � 0 for all j ∈ N , then the
function v� 2N →� defined by

v�S�=min
{∑

j∈S
djxj � x�A�� u�A� for all A⊆ S

}

for all S ⊆N (2)

is supermodular.

Proof. Let S be a subset of N with s elements, and let
j� k ∈ S such that j 	= k. Without loss of generality, we
assume that S = 	1� � � � � j − 1� j� j + 1� � � � � k − 1� k� k +
1� � � � � s�, and that the associated costs satisfy d1 � · · ·� ds .
Define d0 = ds+1 = 0, Si = 	1� � � � � i� for i = 1� � � � � s, and
S0 =�.

It is well known that minimizing a linear function over a
supermodular polyhedron can be achieved by a greedy pro-
cedure (Edmonds 1970). In particular, the value of v�S� is

v�S�=
s∑

i=1

di�u�S
i�− u�Si−1��

=
s∑

i=1

diu�S
i�−

s−1∑
i=0

di+1u�S
i�

=
s∑

i=0

�di −di+1�u�S
i��

We also have that

v�S\	l��=
l−1∑
i=0

�di−di+1�u�S
i�+

s∑
i=l
�di−di+1�u�S

i\	l��

for l= j�k�

v�S\	j�k��=
j−1∑
i=0

�di−di+1�u�S
i�+

k−1∑
i=j
�di−di+1�u�S

i\	j��

+
s∑

i=k
�di−di+1�u�S

i\	j�k���

Therefore, the effect of adding k to S\	k� is

v�S�−v�S\	k��=
s∑

i=0

�di−di+1�u�S
i�−

k−1∑
i=0

�di−di+1�u�S
i�

−
s∑

i=k
�di−di+1�u�S

i\	k��

=
s∑

i=k
�di−di+1��u�S

i�−u�Si\	k����

Similarly, the effect of adding k to S\	j� k� is

v�S\	j��− v�S\	j� k��

=
s∑

i=k
�di −di+1�

(
u�Si\	j��− u�Si\	j� k��)�
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Since u is supermodular, we have that u�A�− u�A\	k���
u�A\	j��−u�A\	j� k�� for any A⊆N� j� k ∈A. This, with
the fact that di −di+1 � 0 for all i= 1� � � � � s, implies that

v�S�−v�S\	k��=
s∑

i=k
�di−di+1��u�S

i�−u�Si\	k���

�

s∑
i=k
�di−di+1��u�S

i\	j��−u�Si\	j�k���

=v�S\	j��−v�S\	j�k���
Therefore, v is supermodular. �

Using similar techniques, we can also show that max-
imizing a nonnegative linear function over a submodular
polyhedron—a polyhedron of the form 	x ∈ �N � x�S� �
u�S� for all S ⊆N� where u� 2N →� is submodular4—has
submodular optimal values. An important example of max-
imizing a nonnegative linear function over a submodular
polyhedron is finding a maximum weight independent set
of a matroid; in fact, a version of our result has been men-
tioned in the literature for this special case (see Nemhauser
and Wolsey 1988, p. 715).

3. Computational Complexity
We now turn our attention to the computational complexity
of computing the least core value of an arbitrary supermod-
ular cost cooperative game �N � v�. For the remainder of the
paper, we assume that there are at least two agents (n� 2).

Theorem 2. Computing the least core value of supermod-
ular cost cooperative games is strongly NP-hard, even if a
cost allocation in the least core is known.

Proof. We show that any instance of the strongly NP-hard
maximum cut problem on an undirected graph (Garey
et al. 1976) can be reduced to an instance of comput-
ing the least core value of a supermodular cost cooper-
ative game. Consider an arbitrary undirected graph G =
�N �E�. Let �� 2N → � be the cut function of G; that is,
��S� = �		i� j� ∈ E� i ∈ S� j ∈ N\S��. Also, let the func-
tion �� 2N → � be defined as ��S� = �		i� j� ∈ E�
i ∈ S� j ∈ S��. Clearly, � is nonnegative. Using the increas-
ing marginal cost characterization of supermodularity (1),
it is straightforward to see that � is supermodular. Using
counting arguments, it is also straightforward to show that
��S�+��N\S�+��S�= ��N� for any S ⊆N .

Now consider the supermodular cost cooperative game
�N � v�, where v�S�= 2��S� for all S ⊆N . For each player
i ∈ N , we define the cost allocation xi = deg�i�, where
deg�i� denotes the degree of node i in G. In addition, let
z = maxS⊆N�S 	=��N ��S�. Note that x�N� = ∑

i∈N deg�i� =
v�N�, and for all S ⊆N , S 	= ��N ,

z� ��S�= �2��S�+��S��− 2��S�= x�S�− v�S��

Therefore, �x� z� is a feasible solution to (LC). Now sup-
pose �x∗� z∗� is an optimal solution to (LC). Adding the

inequalities x∗�S�� v�S�+ z∗ and x∗�N\S�� v�N\S�+ z∗

for any S ⊆ N , S 	= ��N , and using the equality x∗�N �=
v�N�, we have that

2z∗ � v�N�− v�S�− v�N\S�= 2��S�

for all S ⊆N�S 	= ��N �
Therefore, z∗ � z. It follows that z∗ = z=maxS⊆N�S 	=��N

��S�, and x is a cost allocation in the least core of �N � v�.
In other words, finding the least core value of �N � v�
is equivalent to finding the value of a maximum cut in
G= �N �E�. �

In our proof of the above theorem, we show that for any
instance of the maximum cut problem on an undirected
graph, there exists a supermodular cost cooperative game
whose least core value is exactly equal to the value of the
maximum cut. Since the maximum cut problem is inap-
proximable within a factor of 17/16 − � for any � > 0
unless P = NP (Håstad 2001), we immediately obtain the
following inapproximability result.

Corollary 1. There is no �-approximation algorithm for
computing the least core value of supermodular cost coop-
erative games, where �< 17/16, unless P =NP.

4. A Special Case from Single-Machine
Scheduling

In this section, we study a particular supermodular cost
cooperative game that arises from scheduling situations.
Consider a setting where each agent has a job that needs to
be processed on a machine (or processor), and any coalition
of agents can potentially open their own machine. Suppose
each agent i ∈ N has a job with processing time pi ∈�>0

and weight wi ∈��0. Jobs are independent, and are sched-
uled non-preemptively on a single machine, which can pro-
cess at most one job at a time. A scheduling game is a
cooperative game �N � v� where the cost v�S� to a coali-
tion S is the minimum sum of weighted completion times
of jobs in S. If weight wi is interpreted as agent i’s per-
unit-time waiting cost, then v�S� can be seen as the min-
imum total waiting cost for agents in S. By Theorem 1
and the previously mentioned result of Wolsey (1985) and
Queyranne (1993), scheduling games are indeed super-
modular cost cooperative games. The least core value of
scheduling games has a natural interpretation: it is the min-
imum amount we need to charge any coalition for opening
a new machine in order to encourage cooperation.

Cooperative games that arise from scheduling situations
have been studied previously. In sequencing games (e.g.,
Curiel et al. 1989), agents—each with a job that needs to be
processed—start with a feasible solution on a fixed number
of machines, and the profit assigned to a coalition of agents
is the maximal cost savings the coalition can achieve by
rearranging themselves. Scheduling games have received
somewhat limited attention; some authors have developed
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axiomatic characterizations of various cost sharing rules
for these games (Maniquet 2003, Mishra and Rangarajan
2005).

Smith (1956) showed that scheduling jobs in nonincreas-
ing order of wj/pj minimizes the sum of weighted comple-
tion times on a single machine. To simplify the analysis, for
the remainder of this paper we assume without loss of gen-
erality that w1/p1 � · · · � wn/pn. Under this assumption,
we have that v�S�=∑

i∈S
∑i

j=1� j∈S wipj for any S ⊆N .
The structure of the cost function for scheduling games

allows us to explicitly express a cost allocation in the least
core of scheduling games and recast the least core linear
program (LC) as the maximization of a set function defined
solely in terms of the cost function v. We consider the cost
allocation x̄ defined as follows:

x̄i = 1
2

(
v�Si�− v�Si−1�

)+ 1
2

(
v�N\Si−1�− v�N\Si�) (3)

= 1
2wi

i∑
j=1

pj + 1
2pi

n∑
j=i

wj (4)

for i= 1� � � � � n, where Si = 	1� � � � � i� and S0 =�.

Theorem 3. Suppose �N � v� is a scheduling game.
(a) The cost allocation x̄ defined in (4) is in the least

core of �N � v�.
(b) The least core value of �N � v� is z∗ =

1
2 maxS⊆N�S 	=��N 	v�N �− v�S�− v�N\S��.
Proof. For any S ⊆N , the cost allocation x̄ defined in (4)
satisfies

2�x̄�S�−v�S��

=∑
i∈S

i∑
j=1

wipj+
∑
i∈S

n∑
j=i
piwj−2

∑
i∈S

i∑
j=1
j∈S

wipj (5a)

=∑
i∈S

i∑
j=1

wipj+
∑
i∈S

n∑
j=i
piwj−

∑
i∈S

i∑
j=1
j∈S

wipj−
∑
i∈S

n∑
j=i
j∈S

piwj (5b)

=∑
i∈S

i∑
j=1

j∈N\S

wipj+
∑
i∈S

n∑
j=i

j∈N\S

piwj (5c)

=∑
i∈S

i∑
j=1

j∈N\S

wipj+
∑
i∈N\S

i∑
j=1
j∈S

wipj (5d)

=∑
i∈N

i∑
j=1

wipj−
∑
i∈S

i∑
j=1

wipj−
∑
i∈N\S

i∑
j=1

wipj

+∑
i∈S

i∑
j=1

j∈N\S

wipj+
∑
i∈N\S

i∑
j=1
j∈S

wipj (5e)

=∑
i∈N

i∑
j=1

wipj−
∑
i∈S

i∑
j=1
j∈S

wipj−
∑
i∈N\S

i∑
j=1

j∈N\S

wipj (5f)

=v�N�−v�S�−v�N\S�� (5g)

Let z̄= 1
2 maxS⊆N�S 	=��N 	v�N �−v�S�−v�N\S��. The solu-

tion �x̄� z̄� is feasible for (LC), since (5a)–(5g) implies
x̄�N �= v�N�, and for any S ⊆N , S 	= ��N ,

z̄� 1
2

(
v�N�− v�S�− v�N\S�)= x̄�S�− v�S��

Now suppose �x∗� z∗� is an optimal solution to (LC). As
in the proof of Theorem 2, we obtain the following lower
bound on 2z∗:

2z∗ � v�N�− v�S�− v�N\S� for all S ⊆N�S 	= ��N �
Therefore, z∗ � z̄. It follows that the cost allocation x̄ is in
the least core of �N � v�, and the least core value of �N � v�
is z̄. �

In addition to being an element of the least core, it hap-
pens that the cost allocation x̄ as defined in (4) is the
Shapley value of scheduling games (Mishra and Rangarajan
2005). This is quite remarkable: for an arbitrary supermod-
ular cost cooperative game, the Shapley value is not neces-
sarily in the least core. Example 1 illustrates this point.

One might also wonder if the cost allocation x̄ as defined
in (3) is in the least core, or coincides with the Shapley
value, for general supermodular cost cooperative games.
Note that the definition of x̄ in (3) depends on the ordering
of N (for scheduling games, we ordered N according to
nonincreasing wj/pj ). For a given permutation "� N →N
where "�i� denotes the position of player i ∈N , we define
the cost allocation x̄" as follows:

x̄""−1�i� = 1
2 �v�S

i�− v�Si−1��+ 1
2 �v�N\Si−1�− v�N\Si��

for i = 1� � � � � n, where Si = 	"−1�1�� � � � �"−1�i��, and
S0 = �. The cooperative game �N � v�, defined in Exam-
ple 1 below, is an instance of a supermodular cost cooper-
ative game (in particular, v is of the form (2)) for which
the cost allocation x̄" is not in the least core and is not the
Shapley value, for any permutation " of N .

Example 1. Consider the cooperative game �N � v� defined
as follows. There are four players: N = 	1�2�3�4�. Each
agent i ∈N has a processing time pi = i. The cost v�S� to a
coalition S is the minimum total completion time of jobs in
S on two identical parallel machines with non-preemptive
processing. By Theorem 1 and a result by Queyranne and
Schulz (1995), v is supermodular. The Shapley value of this
game is #1 = 3/2, #2 = 17/6, #3 = 23/6, and #4 = 29/6,
and maxS⊆N�S 	=��N 	#�S�−v�S��= 5/3. However, the least
core value of this game is 3/2. It is also straightforward
to check that maxS⊆N�S 	=��N 	x̄" �S�−v�S��= 2, for all per-
mutations " of N .

Although computing the least core value of an arbitrary
supermodular cost cooperative game is strongly NP-hard, it
is still unclear at this point if this is the case for schedul-
ing games. It turns out that computing the least core value
of scheduling games is weakly NP-hard: by Theorem 3(b),
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computing the least core value of scheduling games is equiv-
alent to the problem of minimizing the sum of weighted
completion times of jobs on two identical parallel machines
with non-preemptive processing, which is weakly NP-hard
(Bruno et al. 1974). This is in contrast to Theorem 3(a),
which implies that we can compute a cost allocation in the
least core of scheduling games in polynomial time.

5. Concluding Remarks
Given that the problem of computing the least core value of
supermodular cost cooperative games is strongly NP-hard,
one might be interested in designing approximation algo-
rithms for this problem. In a companion paper (Schulz and
Uhan 2010), we build a framework to approximate the least
core value of supermodular cost cooperative games �N � v�,
by approximately computing a coalition S whose dissatis-
faction e�x�S� = x�S� − v�S� is maximum, given a cost
allocation x. This framework yields a �3+��-approximation
algorithm. As a by-product, we also show how to compute
accompanying approximate least core cost allocations for
these games. In particular, we show how to compute a cost
allocation in the 2-approximate least core of supermodu-
lar cost cooperative games �N � v�; that is, a cost allocation
x ∈�N that satisfies

x�N�= v�N��

x�S�� v�S�+ 2z∗ for all S ⊆N�S 	= ��N �

where z∗ is the least core value of �N � v�. Using our
approximation framework, we are also able to get bet-
ter performance guarantees for subclasses of supermodular
cost cooperative games: we give a fully polynomial-time
approximation scheme for computing the least core value of
scheduling games, as well as a polynomial-time algorithm
for computing the least core value and a cost allocation
in the least core of a cooperative game that arises from
matroid optimization.

Endnotes
1. A set function v� 2N → � is modular if (1) is satis-
fied with equality for all j� k ∈ N such that j 	= k and S ⊆
N\	j� k�.
2. A �-approximation algorithm (� � 1) is an algorithm
that always finds a solution whose objective value is within
a factor � of the optimal value and whose running time is
polynomial in the input size. The parameter � is known as
the performance guarantee of the algorithm.
3. The Shapley value (Shapley 1953) of a cooperative
game �N � v� is the cost allocation # ∈�N , where

#i =
∑

S⊆N\	i�

�S�!��N � − �S� − 1�!
�N �! �v�S ∪ 	i��− v�S��

for all agents i ∈N�

In words, the Shapley value of each agent i reflects agent i’s
average marginal contribution to the coalition N . The
Shapley value is a classic, well-studied solution concept in
cooperative game theory; for example, see Roth (1988).
4. A set function v� 2N → � is submodular if −v is
supermodular.
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